Combining single-cell ATAC and RNA sequencing for supervised cell annotation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abhijit Dasgupta, Jaidip Gill, Brychan Manry, Natasha Markuzon

Ngôn ngữ: eng

Ký hiệu phân loại: 573.1636 *Circulatory system

Thông tin xuất bản: England : BMC bioinformatics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 681194

MOTIVATION: Single-cell analysis offers insights into cellular heterogeneity and individual cell function. Cell type annotation is the first and critical step for performing such an analysis. Current methods mostly utilize single-cell RNA sequencing data. Several studies demonstrated improved unsupervised annotation when combining RNA with single-cell ATAC sequencing, but improvements in supervised methods have not been explored. RESULTS: Single-cell 10x genomics multiome datasets containing paired ATAC and RNA from human peripheral blood mononuclear cells (PBMC) and neuronal cells with Alzheimer's Disease were used for supervised annotation. Using linear and nonlinear dimensionality reduction methods and random forest, support vector machine and logistic regression classification models, we demonstrate the improvement in supervised annotation and prediction confidence in PBMC data when using a combination of RNA seq and ATAC-seq data. No such improvement was observed when annotating neuronal cells. Specifically, F1 scores were improved when using scVI embeddings to annotate PBMC sub-types. CD4 T effector memory cells showed the largest improvement in F1 score.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH