Blockade of insulin receptor signaling in the medullary cardiovascular centers impairs open-loop arterial baroreflex function via attenuated neural arc in healthy male rats.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Juan A Estrada, Ayumi Fukazawa, Amane Hori, Norio Hotta, Gary A Iwamoto, Toru Kawada, Han-Kyul Kim, Masaki Mizuno, Scott A Smith, Wanpen Vongpatanasin

Ngôn ngữ: eng

Ký hiệu phân loại: 700.4 Special topics in the arts

Thông tin xuất bản: United States : FASEB journal : official publication of the Federation of American Societies for Experimental Biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 681584

 Evidence suggests that brain insulin availability acutely modulates arterial baroreflex function. However, little is known about the impact of blocking brain insulin receptor (IR) signaling on arterial baroreflex. We hypothesized that blockade of IR signaling in the brain acutely impairs arterial baroreflex function. Our hypothesis was tested using baroreflex open-loop analysis to evaluate the two subsystems of the arterial baroreflex: the carotid sinus pressure (CSP)-sympathetic nerve activity (SNA) relationship (the neural arc) and the SNA-arterial pressure (AP) relationship (the peripheral arc). In anesthetized healthy male rats, the bilateral carotid sinus baroreceptor regions were surgically isolated from the systemic circulation, and then CSP was changed stepwise from 60 to 180 mmHg before and over 120 min after lateral intracerebroventricular (ICV) administration of either artificial cerebrospinal fluid (control solution) or IR antagonist GSK1838705. ICV injection of GSK1838705 significantly decreased renal SNA (RSNA), AP, and heart rate during stepwise CSP input over a period of 120 min after administration (p <
  .05). The maximum gain of the neural arc was significantly reduced 120 min after ICV injection of GSK1838705 (p = .002). Furthermore, GSK1838705 significantly attenuated the operating-point RSNA (p = .025) and AP (p <
  .001) as estimated by the baroreflex equilibrium diagram. Moreover, 120-min baroreflex stimulation via stepwise CSP input significantly increased c-Fos expression in IR-positive neurons in medullary cardiovascular centers (p <
  .001). Our findings suggest that IR signaling in the brain can modulate AP regulation via alteration of the neural arc of the arterial baroreflex.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH