A hybrid multi model artificial intelligence approach for glaucoma screening using fundus images.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Takehiro Miya, Toru Nakazawa, Takahiro Ninomiya, Masataka Sato, Parmanand Sharma, Naoki Takahashi, Satoru Tsuda

Ngôn ngữ: eng

Ký hiệu phân loại: 006.3 Artificial intelligence

Thông tin xuất bản: England : NPJ digital medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 681965

Glaucoma, a leading cause of blindness, requires accurate early detection. We present an AI-based Glaucoma Screening (AI-GS) network comprising six lightweight deep learning models (total size: 110 MB) that analyze fundus images to identify early structural signs such as optic disc cupping, hemorrhages, and nerve fiber layer defects. The segmentation of the optic cup and disc closely matches that of expert ophthalmologists. AI-GS achieved a sensitivity of 0.9352 (95% CI 0.9277-0.9435) at 95% specificity. In real-world testing, sensitivity dropped to 0.5652 (95% CI 0.5218-0.6058) at ~0.9376 specificity (95% CI 0.9174-0.9562) for the standalone binary glaucoma classification model, whereas the full AI-GS network maintained higher sensitivity (0.8053, 95% CI 0.7704-0.8382) with good specificity (0.9112, 95% CI 0.8887-0.9356). The sub-models in AI-GS, with enhanced capabilities in detecting early glaucoma-related structural changes, drive these improvements. With low computational demands and tunable detection parameters, AI-GS promises widespread glaucoma screening, portable device integration, and improved understanding of disease progression.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH