Spatio-temporal analysis of urban expansion and land use dynamics using google earth engine and predictive models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: M Abdullah-Al-Wadud, Rana Waqar Aslam, Elgar Barboza, Iram Naz, Abdul Quddoos, Aqil Tariq, Sajid Ullah, Ang Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 333.5 Renting and leasing land

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 681966

Urban expansion and changes in land use/land cover (LULC) have intensified in recent decades due to human activity, influencing ecological and developmental landscapes. This study investigated historical and projected LULC changes and urban growth patterns in the districts of Multan and Sargodha, Pakistan, using Landsat satellite imagery, cloud computing, and predictive modelling from 1990 to 2030. The analysis of satellite images was grouped into four time periods (1990-2000, 2000-2010, 2010-2020, and 2020-2030). The Google Earth Engine cloud-based platform facilitated the classification of Landsat 5 ETM (1990, 2000, and 2010) and Landsat 8 OLI (2020) images using the Random Forest model. A simulation model integrating Cellular Automata and an Artificial Neural Network Multilayer Perceptron in the MOLUSCE plugin of QGIS was employed to forecast urban growth to 2030. The resulting maps showed consistently high accuracy levels exceeding 92% for both districts across all time periods. The analysis revealed that Multan's built-up area increased from 240.56 km
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH