Current small-molecule-regulated synthetic gene switches face clinical limitations such as cytotoxicity, long-term side-effects and metabolic disturbances. Here, we describe an advanced synthetic platform inducible by risk-free input medication (ASPIRIN), which is activated by acetylsalicylic acid (ASA/aspirin), a multifunctional drug with pain-relieving, anti-inflammatory, and cardiovascular benefits. To construct ASPIRIN, we repurpose plant salicylic acid receptors NPR1 and NPR4. Through domain truncations and high-throughput mutant library screening, we enhance their ASA sensitivity. Optimized NPR1 fused with a membrane-tethering myristoylation signal (Myr-NPR1) forms a complex with NPR4, which is fused with a DNA binding domain (VanR) and a transactivation domain (VP16). ASA induces dissociation of the Myr-NPR1/NPR4-VanR-VP16 complex, allowing nuclear translocation of NPR4-VanR-VP16 to activate VanR-operator-controlled gene expression. In male diabetic mice implanted with microencapsulated ASPIRIN-engineered cells, ASA regulates insulin expression, restores normoglycemia, alleviates pain and reduces biomarkers of diabetic neuropathy and inflammation. We envision this system will pave the way for aspirin-based combination gene therapies.