Active catalysts are typically metastable, and their surface state depends on the gas-phase chemical potential and reaction kinetics. To gain relevant insights into structure-performance relationships, it is essential to investigate catalysts under their operational conditions. Here, we use operando TEM combining real-time observations with online mass spectrometry (MS) to study a Cu catalyst during ethylene oxidation. We identify three distinct regimes characterized by varying structures and states that show different selectivities with temperature, and elucidate the reaction pathways with the aid of theoretical calculations. Our findings reveal that quasi-static Cu