BACKGROUND: The tyrosine receptor kinase inhibitor (TRKi) entrectinib is used to treat neurotrophic tyrosine receptor kinase (NTRK) fusion-positive solid tumors and ROS1-positive patients. Despite its impressive efficacy against cancer, the clinical application is still limited by the central nervous system (CNS)-related toxicities. However, the precise mechanism of such CNS-related toxicities remains elusive. METHODS: The effect of entrectinib-induced nerve cell damage was evaluated by the nerve cells (PC12, HT22 and SK-N-SH) based RESULTS: Entrectinib significantly inhibited the nerve cells proliferation and colony formation, and induced nerve cells apoptosis. Transcriptome sequencing analysis and qRT-PCR revealed that THBS1 was downregulated within entrectinib treatment. KEGG and GSEA analysis also suggested that entrectinib directly caused the abnormalities in proliferation-related signaling pathway like PI3K-AKT pathway, and apoptosis-related signaling pathway including TGF-β pathway. We further demonstrated that THBS1, TGF-β1, PI3K, AKT and p-AKT were downregulated by entrectinib. Meanwhile, pretreatment with THBS1 overexpression plasmids significantly rescued nerve cells (PC12, HT22 and SK-N-SH) from cell death and the abnormalities in PI3K-AKT and TGF-β signaling pathways. CONCLUSION: These results identified a critical role of entrectinib in promoting nerve cell damage by downregulating the expression of THBS1 while also inhibiting PI3K-AKT and TGF-β signaling pathways. Our findings will provide potential therapeutic targets for CNS-related toxicities.