INTRODUCTION: Age-related decline in muscle strength and performance significantly impact morbidity and mortality. Various factors including genetics have been investigated to better understand this decline. This study aimed to investigate longitudinal changes in physical performance and strength and their association with genetic variants in genes involved in the vitamin D pathway. METHODS: This longitudinal study was conducted in the Prishtina region, Kosovo, with community-dwelling adults over 40 years of age. Genomic DNA was extracted from saliva samples to assess single nucleotide polymorphisms in the vitamin D receptor (VDR) gene (rs7975232, rs2228570, rs731236, also referred to as ApaI, FokI, and TaqI, respectively) and the vitamin D binding protein (GC) gene (rs4588, rs2282679). Physical performance was assessed by isometric handgrip strength, 30-s chair stand, timed up and go and 6-min walk test. Vitamin D levels were assessed from blood samples only at follow-up. RESULTS: A total of 138 participants (65.1 ± 9.0 years, 52.2% female) were included. Over a 2.7-year period, significant declines in the 30-s chair stand test ( CONCLUSION: Physical fitness declined significantly over time, with female participants experiencing a greater decline in handgrip strength. The ApaI variant in the VDR gene was associated with changes in muscle strength, while variants in the GC gene were associated with vitamin D levels. These findings suggest that genetic factors related to the vitamin D pathway may contribute to the age-related decline in muscle strength. Therefore, genetic predisposition should be considered when developing individual interventions for healthy aging.