CyclicCAE: A Conformational Autoencoder for Efficient Heterochiral Macrocyclic Backbone Sampling.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Parisa Hosseinzadeh, Vikram Khipple Mulligan, Andrew C Powers, P Douglas Renfrew

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 682737

Macrocycles are a promising therapeutic class. The incorporation of heterochiral and non-natural chemical building-blocks presents challenges for rational design, however. With no existing machine learning methods tailored for heterochiral macrocycle design, we developed a novel convolutional autoencoder model to rapidly generate energetically favorable macrocycle backbones for heterochiral design and structure prediction. Our approach surpasses the current state-of-the-art method, Generalized Kinematic loop closure (GenKIC) in the Rosetta software suite. Given the absence of large, available macrocycle datasets, we created a custom dataset in-house and
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH