Macrocycles are a promising therapeutic class. The incorporation of heterochiral and non-natural chemical building-blocks presents challenges for rational design, however. With no existing machine learning methods tailored for heterochiral macrocycle design, we developed a novel convolutional autoencoder model to rapidly generate energetically favorable macrocycle backbones for heterochiral design and structure prediction. Our approach surpasses the current state-of-the-art method, Generalized Kinematic loop closure (GenKIC) in the Rosetta software suite. Given the absence of large, available macrocycle datasets, we created a custom dataset in-house and