Distinct cAMP regulation in scleroderma lung and skin myofibroblasts governs their dedifferentiation via p38α inhibition.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jared D Baas, Carol Feghali-Bostwick, Sean M Fortier, Marc Peters-Golden, John Varga

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 682820

Fibrosis in systemic sclerosis/scleroderma (SSc) is characterized by the progressive accumulation and persistence in multiple organs of pathologic fibroblasts whose contractile properties and exuberant secretion of collagens promote tissue stiffness and scarring. Identifying a tractable mechanism for inactivating and possibly clearing these ultimate effector cells of fibrosis, conventionally termed myofibroblasts (MFs), represents an appealing therapeutic strategy for patients with SSc. This can be accomplished by their phenotypic dedifferentiation, a process known to be promoted by generation of the intracellular second messenger cyclic AMP (cAMP). Notably, however, the abilities of SSc fibroblasts derived from different tissues to generate cAMP - and dedifferentiate in response to it - have never been directly characterized or compared. Here we compared these two processes in lung and skin MFs derived from patients with SSc. While directly increasing intracellular cAMP induced comparable dedifferentiation of lung and skin SSc MFs, dedifferentiation in response to the well-recognized cAMP stimulus prostaglandin E
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH