Fish Gelatin-Hyaluronic Acid Scaffold for Construction of an Artificial Three-Dimensional Skin Model.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Piriya Chailom, Voravee P Hoven, Tanapat Palaga, Thitiporn Pattarakankul

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : ACS omega , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 683064

Artificial three-dimensional (3D) skin models have been used as an alternative tool for toxicity testing, skin disease studying, and skin tissue engineering. The 3D skin model can be fabricated using a porous scaffold that provides 3D cellular construction that supports cell attachment and promotes nutrient and air permeation. In this study, fish gelatin (FG) and hyaluronic acid (HA) were selected for scaffold fabrication because they carry no risk of zoonotic disease transmission and are major components of the extracellular matrix (ECM), which may functionally mimic the ECM of native human skin. The FG-HA scaffolds prepared by using a freeze-drying technique were characterized for their porosity, swelling ratio, and mechanical properties. The scaffolds were seeded with dermal fibroblasts and epidermal keratinocytes followed by culturing in air-liquid interface conditions to allow for cell differentiation to form the dermis and epidermis layer, respectively. Histological analysis of the fabricated 3D skin using the FG-HA scaffold clearly exhibited a bilayer of the dermis and epidermis. Additionally, immunochemical staining of the epidermis layer demonstrated the expression of keratin 5, loricrin, and filaggrin, confirming the proliferation and differentiation of keratinocytes. This research evidently suggests that the FG-HA porous scaffold can serve as a potential material for constructing a 3D skin model with characteristics that closely resemble native human skin.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH