Modeling Neural Activity with Conditionally Linear Dynamical Systems.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor Geadah, David Lipshutz, Amin Nejatbakhsh, Jonathan W Pillow, Alex H Williams

Ngôn ngữ: eng

Ký hiệu phân loại: 629.832 Linear systems

Thông tin xuất bản: United States : ArXiv , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 683144

Neural population activity exhibits complex, nonlinear dynamics, varying in time, over trials, and across experimental conditions. Here, we develop Conditionally Linear Dynamical System (CLDS) models as a general-purpose method to characterize these dynamics. These models use Gaussian Process (GP) priors to capture the nonlinear dependence of circuit dynamics on task and behavioral variables. Conditioned on these covariates, the data is modeled with linear dynamics. This allows for transparent interpretation and tractable Bayesian inference. We find that CLDS models can perform well even in severely data-limited regimes (e.g. one trial per condition) due to their Bayesian formulation and ability to share statistical power across nearby task conditions. In example applications, we apply CLDS to model thalamic neurons that nonlinearly encode heading direction and to model motor cortical neurons during a cued reaching task.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH