Local Sliced Wasserstein Feature Sets for Illumination Invariant Face Recognition.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shiying Li, Gustavo K Rohde, Abu Hasnat Mohammad Rubaiyat, Mohammad Shifat-E-Rabbi, Xuwang Yin, Yan Zhuang

Ngôn ngữ: eng

Ký hiệu phân loại: 618.8 Obstetrical surgery

Thông tin xuất bản: England : Pattern recognition , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 683320

We present a new method for face recognition from digital images acquired under varying illumination conditions. The method is based on mathematical modeling of local gradient distributions using the Radon Cumulative Distribution Transform (R-CDT) [1]. We demonstrate that lighting variations cause certain types of deformations of local image gradient distributions which, when expressed in R-CDT domain, can be modeled as a subspace. Face recognition is then performed using a nearest subspace method in R-CDT domain of local gradient distributions. Experimental results demonstrate the proposed method outperforms other alternatives in several face recognition tasks with challenging illumination conditions. Python code implementing the proposed method is publicly available, which is integrated as a part of the software package PyTransKit.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH