Compositional architecture: Orthogonal neural codes for task context and spatial memory in prefrontal cortex.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Charles D Holmes, JeongJun Park, Lawrence H Snyder

Ngôn ngữ: eng

Ký hiệu phân loại: 992 [Unassigned]

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 683518

The prefrontal cortex (PFC) is crucial for maintaining working memory across diverse cognitive tasks, yet how it adapts to varying task demands remains unclear. Compositional theories propose that cognitive processes in neural network rely on shared components that can be reused to support different behaviors. However, previous studies have suggested that working memory components are task specific, challenging this framework. Here, we revisit this question using a population-based approach. We recorded neural activity in macaque monkeys performing two spatial working memory tasks with opposing goals: one requiring movement toward previously presented spatial locations (look task) and the other requiring avoidance of those locations (no-look task). Despite differences in task demands, we found that spatial memory representations were largely conserved at the population level, with a common low-dimensional neural subspace encoding memory across both tasks. In parallel, task identity was encoded in an orthogonal subspace, providing a stable and independent representation of contextual information. These results provide neural evidence for a compositional model of working memory, where representational geometry enables the efficient and flexible reuse of mnemonic codes across behavioral contexts while maintaining an independent representation of context.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH