Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jesse Gillis, Yun Li, Sridevi Venkatesan, Jonathan M Werner

Ngôn ngữ: eng

Ký hiệu phân loại: 597.948 *Amphisbaenia (Worm lizards)

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 683528

Single-cell transcriptomics has revolutionized our understanding of neurodevelopmental cell identities, yet, predicting a cell type's developmental state from its transcriptome remains a challenge. We perform a meta-analysis of developing human brain datasets comprising over 2.8 million cells, identifying both tissue-level and cell-autonomous predictors of developmental age. While tissue composition predicts age within individual studies, it fails to generalize, whereas specific cell type proportions reliably track developmental time across datasets. Training regularized regression models to infer cell-autonomous maturation, we find that a cell type-agnostic model achieves the highest accuracy (error = 2.6 weeks), robustly capturing developmental dynamics across diverse cell types and datasets. This model generalizes to human neural organoids, accurately predicting normal developmental trajectories (R = 0.91) and disease-induced shifts
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH