Quantile Regression for Longitudinal Functional Data with Application to Feed Intake of Lactating Sows.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Maria Laura Battagliola, Helle Sørensen, Ana-Maria Staicu, Anders Tolver

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : Journal of agricultural, biological, and environmental statistics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 683822

UNLABELLED: This article focuses on the study of lactating sows, where the main interest is the influence of temperature, measured throughout the day, on the lower quantiles of the daily feed intake. We outline a model framework and estimation methodology for quantile regression in scenarios with longitudinal data and functional covariates. The quantile regression model uses a time-varying regression coefficient function to quantify the association between covariates and the quantile level of interest, and it includes subject-specific intercepts to incorporate within-subject dependence. Estimation relies on spline representations of the unknown coefficient functions and can be carried out with existing software. We introduce bootstrap procedures for bias adjustment and computation of standard errors. Analysis of the lactation data indicates, among others, that the influence of temperature increases during the lactation period.Supplementary materials accompanying this paper appear on-line. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13253-024-00601-5.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH