Sports behavior prediction requires precise and reliable analysis of muscle activity during exercise. This study proposes a multi-channel correlation feature extraction method for electromyographic (EMG) signals to overcome challenges in sports behavior prediction. A wavelet threshold denoising algorithm is enhanced with nonlinear function transitions and control coefficients to improve signal quality, achieving effective noise reduction and a higher signal-to-noise ratio. Furthermore, multi-channel linear and nonlinear correlation features are combined, leveraging mutual information estimation