A multi-scale CNN with atrous spatial pyramid pooling for enhanced chest-based disease detection.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hanan Aljuaid, Muhammad Asif, Faisal Bukhari, Muhammad Abdullah Shah Bukhari, Waheed Iqbal

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : PeerJ. Computer science , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 684358

We introduce a sophisticated deep-learning model designed for the early detection of COVID-19 and pneumonia. The model employs a convolutional neural network-integrated with atrous spatial pyramid pooling. The atrous spatial pyramid pooling mechanism enhances the convolutional neural network model's ability to capture fine and large-scale features, optimizing detection accuracy in chest X-ray images. This improvement, along with transfer learning, significantly enhances the overall performance. By utilizing data augmentation to address the scarcity of available X-ray images, our atrous spatial pyramid pooling-enhanced convolutional neural network achieved a validation accuracy of 98.66% for COVID-19 and 83.75% for pneumonia, which beats the validation results of the other state of the art approaches (the metrics used for evaluation were accuracy, precision, F1-score, recall, specificity, and area under the curve). The model's multi-branch architecture facilitates more accurate and adaptable disease prediction, thereby increasing diagnostic precision and robustness. This approach offers the potential for faster and more reliable diagnoses of chest-related conditions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH