Principal component analysis and fine-tuned vision transformation integrating model explainability for breast cancer prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Phuc Phan Hong, Huong Hoang Luong, Dat Vo Minh, Hai Thanh Nguyen, Thinh Nguyen Le Quang, Nguyen Thai-Nghe, Anh Dinh The

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: Germany : Visual computing for industry, biomedicine, and art , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 684606

Breast cancer, which is the most commonly diagnosed cancers among women, is a notable health issues globally. Breast cancer is a result of abnormal cells in the breast tissue growing out of control. Histopathology, which refers to the detection and learning of tissue diseases, has appeared as a solution for breast cancer treatment as it plays a vital role in its diagnosis and classification. Thus, considerable research on histopathology in medical and computer science has been conducted to develop an effective method for breast cancer treatment. In this study, a vision Transformer (ViT) was employed to classify tumors into two classes, benign and malignant, in the Breast Cancer Histopathological Database (BreakHis). To enhance the model performance, we introduced the novel multi-head locality large kernel self-attention during fine-tuning, achieving an accuracy of 95.94% at 100× magnification, thereby improving the accuracy by 3.34% compared to a standard ViT (which uses multi-head self-attention). In addition, the application of principal component analysis for dimensionality reduction led to an accuracy improvement of 3.34%, highlighting its role in mitigating overfitting and reducing the computational complexity. In the final phase, SHapley Additive exPlanations, Local Interpretable Model-agnostic Explanations, and Gradient-weighted Class Activation Mapping were used for the interpretability and explainability of machine-learning models, aiding in understanding the feature importance and local explanations, and visualizing the model attention. In another experiment, ensemble learning with VGGIN further boosted the performance to 97.13% accuracy. Our approach exhibited a 0.98% to 17.13% improvement in accuracy compared with state-of-the-art methods, establishing a new benchmark for breast cancer histopathological image classification.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH