Correlated Topic Modeling for Short Texts in Spherical Embedding Spaces.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jamal Bentahar, Nizar Bouguila, Hafsa Ennajari

Ngôn ngữ: eng

Ký hiệu phân loại: 363.1791 Public safety programs

Thông tin xuất bản: United States : IEEE transactions on pattern analysis and machine intelligence , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 684842

With the prevalence of short texts in various forms such as news headlines, tweets, and reviews, short text analysis has gained significant interest in recent times. However, modeling short texts remains a challenging task due to its sparse and noisy nature. In this paper, we propose a new Spherical Correlated Topic Model (SCTM), which takes into account the correlation between topics. Our model integrates word and knowledge graph embeddings to better capture the semantic relationships among short texts. We adopt the von Mises-Fisher distribution to model the high-dimensional word and entity embeddings on a hypersphere, enabling better preservation of the angular relationships between topic vectors. Moreover, knowledge graph embeddings are incorporated to further enrich the semantic meaning of short texts. Experimental results on several datasets demonstrate that our proposed SCTM model outperforms existing models in terms of both topic coherence and document classification. In addition, our model is capable of providing interpretable topics and revealing meaningful correlations among short texts.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH