A surgeon peers downward into a body cavity when operating. Holding this position for hours across weeks, months, and years may lead to neck pain and musculoskeletal disorders. We were inspired by ungulates such as giraffes and horses, which use dorsal-ventral flexion to graze for 9-14 h per day without perceivable neck pain. Ungulates evolved a strong nuchal ligament that relieves neck muscles by stretching to support some of the weight of the head during grazing or running. In contrast, humans evolved an upright posture, and like many primates, have a reduced nuchal ligament. The goal of this study is to use the nuchal ligament as inspiration for a neck brace that passively supports the weight of the head while still permitting lateral flexion, ventral-dorsal flexion, and rotation. We assembled a prototype using an elastic band, headband, and back posture corrector. Our device augments the human nuchal ligament by using a stiff material and greater mechanical advantage. By our calculations, flexing the head ventrally 40 degrees when wearing the brace reduces the torque applied by neck muscles by 21%. Our device is a proof-of-concept that a bioinspired device can offload neck muscular tension and prevent injury.