Polyvinyl butyral (PVB) is a specialty polymer primarily used as an interlayer in laminated glass applications with no current circularity plan after the end of its life. This study presents a comprehensive recycling strategy for postconsumed PVB wastes based on a remelting-restabilization approach. Thermo-oxidative degradation of PVB was analyzed under heat and shear stress conditions in an internal mixer apparatus. The degradation mechanism of plasticized PVB (p-PVB) and unplasticized PVB (u-PVB) was identified as chain scission through melt flow rate (MFR), intrinsic viscosity (IV), and yellowness index (YI) characterization. Six different antioxidant (AO) formulations were screened for their effectiveness in inhibiting degradation in both neat u-PVB and p-PVB, as well as retrieved PVB. The phenolic antioxidants 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene and 4-[[4,6-bis(octylsulfanyl)-1,3,5-triazin-2-yl]amino]-2,6-di-tert-butylphenol were found to be the most effective ones based on MFR, oxidation onset temperature (OOT), and YI evaluations, while the optimal AO concentration was determined at 0.3%