Learning reshapes the hippocampal representation hierarchy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Heloisa S C Chiossi, Jozsef Csicsvari, Michele Nardin, Gašper Tkačik

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 685167

A key feature of biological and artificial neural networks is the progressive refinement of their neural representations with experience. In neuroscience, this fact has inspired several recent studies in sensory and motor systems. However, less is known about how higher associational cortical areas, such as the hippocampus, modify representations throughout the learning of complex tasks. Here, we focus on associative learning, a process that requires forming a connection between the representations of different variables for appropriate behavioral response. We trained rats in a space-context associative task and monitored hippocampal neural activity throughout the entire learning period, over several days. This allowed us to assess changes in the representations of context, movement direction, and position, as well as their relationship to behavior. We identified a hierarchical representational structure in the encoding of these three task variables that was preserved throughout learning. Nevertheless, we also observed changes at the lower levels of the hierarchy where context was encoded. These changes were local in neural activity space and restricted to physical positions where context identification was necessary for correct decision-making, supporting better context decoding and contextual code compression. Our results demonstrate that the hippocampal code not only accommodates hierarchical relationships between different variables but also enables efficient learning through minimal changes in neural activity space. Beyond the hippocampus, our work reveals a representation learning mechanism that might be implemented in other biological and artificial networks performing similar tasks.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH