The simultaneous hydrolysis of cellulose and hemicellulose involves trade-offs, making precise control of hydrolysis products crucial for sustainable development. This study employed three machine learning (ML) models-Random Forest (RF), Extreme Gradient Boosting (XGB), and Support Vector Machines (SVM)-to simulate and predict the yields of xylose (Xyl), furfural (FF), glucose (Glu), 5-hydroxymethylfurfural (5-HMF), and levulinic acid (LA) in a phosphoric acid/acetone/water system. The RF model demonstrated the highest accuracy, with R