ETHNOPHARMACOLOGICAL RELEVANCE: Placenta is a kind of traditional Chinese medicine, known as "Ziheche". The role of cow placental peptides (CPP) in delaying liver aging has been reported, and in-depth exploration of the specific regulatory mechanisms is of great significance for the recycling and utilization of CPP and the development of natural anti-aging drugs. AIM OF THE STUDY: To investigate the protective effects and mechanisms of CPP on liver aging induced by D-galactose (D-gal) in mice from the perspective of mitochondrial energy metabolism. METHODS: An aging model was induced in mice using D-gal. The body weight and liver index of mice were measured, followed by staining and electron microscopy to observe liver morphology and aging markers. Reactive oxygen species (ROS) levels and antioxidant-related indicators were assessed, and mitochondrial function was evaluated. Finally, changes and mechanisms in liver transcriptomics and targeted mitochondrial energy metabolomics were analyzed and integrated to elucidate the regulatory pathways through which CPP delays liver aging. RESULTS: CPP improved liver structural damage, oxidative stress, and mitochondrial dysfunction induced by D-galactose in aging mice. It increased the final body weight and liver index, alleviated hepatocyte swelling and degeneration, enhanced liver antioxidant capacity, and restored normal mitochondrial morphology and function. The combined analysis of targeted mitochondrial energy metabolomics and liver transcriptomics revealed that CPP directly or indirectly regulated mitochondrial energy metabolism and delayed aging by influencing the cAMP signaling pathway, PI3K-Akt signaling pathway, oxidative phosphorylation, and other pathways, thereby modulating related genes and metabolites.