Building and modifying diverse synaptic properties: Insights from Drosophila.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dion Dickman, Kaikai He

Ngôn ngữ: eng

Ký hiệu phân loại: 678.54 Properties

Thông tin xuất bản: England : Current opinion in neurobiology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 685411

Neuronal synapses are endowed with tremendous structural, functional, and molecular diversity, honed according to the physiological needs of the circuits in which they are embedded. This diversity, once established in development, can subsequently be further modified by plasticity. It is now widely appreciated that even closely related neurons sharing the same molecular machinery can exhibit remarkable diversity in synaptic structure, function, and plasticity. How such synaptic heterogeneity is achieved is now beginning to be elucidated in a powerful model system, the glutamatergic Drosophila neuromuscular junction (NMJ). In this review, we will first discuss recent discoveries about the structural, functional, and genetic diversity at synapses made by two closely related glutamatergic motor neurons at the Drosophila NMJ, MN-Ib and -Is. Next, we detail how inherent synaptic diversity can be subsequently modified by plasticity in response to altered synaptic growth, excess glutamate release, diminished glutamate receptor functionality, and disease. Together, these insights at the Drosophila NMJ have revealed fundamental principles about how closely related synapses are differentially sculpted in development and remodeled through plasticity to ultimately stabilize neural circuit function.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH