Stroke remains a leading cause of global mortality, with neuroinflammation significantly exacerbating clinical outcomes. Microglia serve as key mediators of post-stroke neuroinflammation, though the mechanisms driving their migration to injury sites remain poorly understood. In this study, using publicly available single-cell sequencing data (GSE234052), we identified a migration-associated microglial subtype in a murine model of distal middle cerebral artery occlusion (dMCAO). Additionally, ribosome-bound mRNA sequencing data (GSE225110) from microglia isolated from peri-infarct cortical tissue uncovered dMCAO-induced alterations in microglial mRNA translation. By integrating these datasets, we identified A Disintegrin And Metalloproteinase 8 (Adam8) as a key gene upregulated at both the transcriptional and translational levels post-dMCAO. Protein analysis revealed that both the precursor and active forms of Adam8 were predominantly expressed in microglia and significantly upregulated in peri-infarct regions following dMCAO. Notably, Adam8 inhibition with BK-1361 significantly reduced Adam8 cleavage, M1 microglial migration, inflammation, infarct size, and improved neurological outcomes. Bioinformatics analysis further identified Myo1e as a potential interacting partner of Adam8, a finding validated through immunofluorescence co-localization. These findings highlight Adam8 as a promising therapeutic target for mitigating post-stroke neuroinflammation and offer new insights into the mechanisms of microglial migration.