The formation of gadolinium-rich nanoparticles in multiple tissues from intravenous magnetic resonance imaging contrast agents may be the initial step in rare earth metallosis. The mechanism of gadolinium-induced diseases is poorly understood, as is how these characteristic nanoparticles are formed. Gadolinium deposition has been observed with all magnetic resonance imaging contrast agent brands. Aside from endogenous metals and acidic conditions, little attention has been paid to the role of the biological milieu in the degradation of magnetic resonance imaging contrast agents into nanoparticles. Herein, we describe the decomposition of the commercial magnetic resonance imaging contrast agents Omniscan and Dotarem in the presence of oxalic acid, a well-known endogenous compound. Omniscan dechelated rapidly and preluded measurement by the means available, while Dotarem underwent a two-step decomposition process. The decomposition of both magnetic resonance imaging contrast agents by oxalic acid formed gadolinium oxalate (Gd