The protective effect of polyurea (PU) coatings on polymer matrix composite (PMC) panels subjected to high-velocity ballistic impacts, particularly as a potential replacement material for large power transformer (LPT) tanks, has not been extensively reported in the literature. This study addresses the gap by presenting a numerical investigation into the ballistic performance of PMC panels with PU coatings. Due to the complex nature and high cost of experimental testing, this research relies on finite element modeling to predict the panels' responses under impact. Glass fiber/epoxy and carbon fiber/epoxy composite panels were tested individually and in hybrid configurations while being subjected to simulated 400 m/s steel projectile impacts. This study first investigates the impact damage evolution in uncoated panels, analyzing the arrest depth as a function of the panel thickness. It then evaluates the effect of PU coatings on the ballistic response. The results demonstrate that PU coatings are three times more effective in protecting both glass and carbon fiber panels from penetration compared to simply increasing the panel thickness. Additionally, the utilization of PU coatings led to a reduction in cost, mass, and thickness while still preventing penetration of the projectile in the models.