Pennate diatoms make non-photochemical quenching as simple as possible but not simpler.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Benjamin Bailleul, Dany Croteau, Angela Falciatore, Marianne Jaubert

Ngôn ngữ: eng

Ký hiệu phân loại: 541.353 Photochemical reactions due to specific radiation

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 686047

Studies of marine microalgal photosynthesis are heavily moulded on legacy research from organisms like Arabidopsis and Chlamydomonas, despite the differences between primary and secondary endosymbionts. Non-photochemical quenching (NPQ) protects photosystem II from excessive light and, in pennate diatoms, requires the xanthophyll pigment diatoxanthin and Lhcx proteins. Although NPQ's relationship with diatoxanthin is straightforward, the role of Lhcx proteins has been unclear and at the core of several conflicting NPQ models, often unnecessarily borrowing the complexity of models from green organisms. We use 14 Phaeodactylum tricornutum strains, including 13 transgenic lines with variable Lhcx1 expression levels, grow them under two non-stressful light conditions, and modulate diatoxanthin levels through short light stress. The resulting Lhcx1-diatoxanthin matrices are used to demonstrate that NPQ is proportional to the product of the Lhcx1 concentration and the proportion of diatoxanthin in the xanthophyll pool. This indicates that the interaction between diatoxanthin and Lhcx1 creates a homogeneous Stern-Volmer quencher responsible for NPQ. Additionally, we demonstrate that the photosynthetic unit in pennate diatoms follows a "lake" model, with discrepancies in the NPQ-photochemistry relationship arising from unconsidered assumptions, one possibility being cellular heterogeneity. This underscores pennate diatoms as natural reductionist system for studying marine photosynthesis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH