Evaluating search engines and large language models for answering health questions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Marcos Fernández-Pichel, David E Losada, Juan C Pichel

Ngôn ngữ: eng

Ký hiệu phân loại: 027.6 *Libraries for special groups and organizations

Thông tin xuất bản: England : NPJ digital medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 686160

Search engines (SEs) have traditionally been primary tools for information seeking, but the new large language models (LLMs) are emerging as powerful alternatives, particularly for question-answering tasks. This study compares the performance of four popular SEs, seven LLMs, and retrieval-augmented (RAG) variants in answering 150 health-related questions from the TREC Health Misinformation (HM) Track. Results reveal SEs correctly answer 50-70% of questions, often hindered by many retrieval results not responding to the health question. LLMs deliver higher accuracy, correctly answering about 80% of questions, though their performance is sensitive to input prompts. RAG methods significantly enhance smaller LLMs' effectiveness, improving accuracy by up to 30% by integrating retrieval evidence.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH