The radiative effects of wildfires have been traditionally estimated by models using radiative transfer calculations. Assessment of model-predicted radiative effects commonly involves information on observation-based aerosol optical properties. However, lack or incompleteness of this information for dense plumes generated by intense wildfires reduces substantially the applicability of this assessment. Here we introduce a novel method that provides additional observational constraints for such assessments using widely available ground-based measurements of shortwave and spectrally resolved irradiances and aerosol optical depth (AOD) in the visible and near-infrared spectral ranges. We apply our method to quantify the radiative impact of the record-breaking wildfires that occurred in the Western US in September 2020. For our quantification we use integrated ground-based data collected at the Atmospheric Measurements Laboratory in Richland, Washington, USA with a location frequently downwind of wildfires in the Western US. We demonstrate that remarkably dense plumes generated by these wildfires strongly reduced the solar surface irradiance (up to 70% or 450 Wm