Chronic inflammation is a critical mechanism contributing to the aging process
however, research specifically addressing chronic inflammation in skin biology remains limited. This study investigates the protective mechanism of Rosa roxburghii Tratt. (RRT) extract against UVB-induced inflammaging. RRT extract effectively reduces the secretion of IL-6, IL-1α, TNF-α, and PGE2 in keratinocytes. Additionally, it attenuates UVB-induced IL-17 pathway activation by downregulating IL-17RA, c-Fos, and c-Jun protein levels, as well as the gene expression of IL-17RA, TRAF6, HSP90, and IKKγ. Co-culturing human foreskin fibroblasts (HFF) with inflammatory factors secreted by UVB-exposed keratinocytes reveals that these factors significantly reduce mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS), thereby promoting aging in HFF. The anti-inflammaging effects of RRT extract are achieved through the reduction of β-galactosidase activity, targeting of the TGF-β1-Smad2/3 signaling pathway, upregulation of COL1A1 expression, and reduction of senescence-associated secretory phenotype secretion. This study provides a novel perspective and robust scientific foundation for exploring mechanisms of skin aging and potential therapeutic interventions.