The body's innate immune system plays a pivotal role in identifying and eliminating cancer cells. However, as the immune system ages, its functionality can deteriorate, becoming dysfunctional, inefficient, or even inactive-a condition referred to as immunosenescence. This decline significantly increases the risk of malignancies. While the pro-cancer effects of T-cell aging have been widely explored, there remains a notable gap in the literature regarding the impact of aging on innate immune cells, such as macrophages and neutrophils. This review seeks to address this gap, with emphasis on these cell types. Furthermore, although certain cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have demonstrated efficacy across a broad spectrum of cancers, elderly patients are less likely to derive clinical benefit from these treatments. In some cases, they may even experience immune-related adverse events (irAEs). While senolytic strategies have shown promise in exerting anti-cancer effects, their adverse reactions and potential off-target effects present significant challenges. This review aims to elucidate the pro-cancer effects of immunosenescence, its implications for the efficacy and safety of ICIs, and potential anti-aging treatment strategies. In addition, optimizing anti-aging therapies to minimize adverse reactions and enhance therapeutic outcomes remains a critical focus for future research endeavors.