Dimethyl carbonate and dimethyl oxalate are competitive products of the carbonylation reaction of methyl nitrite (MN) under Pd-based catalysts. The chemo-selectivity is influenced not just by the thermodynamic constraints of reaction conditions but also by the electronic structures of catalysts. Lewis acid sites are extensively employed to modulate the electronic structures of Pd active sites for kinetic carbonate production, but their precise role remains unclear. Herein, we employed a combination of reaction kinetic, in situ DRIFTS experiments and DFT calculation, unveiling the indispensable role of Lewis acid sites in activating MN and facilitating the transfer of *OCH3 species, which is the key to obtain the kinetic carbonate outcome. The molecular understanding reveals the cooperation of Pd center and Lewis acid sites in directing selectivity towards carbonate product, which enables the rational design of higher-performance catalysts.