In Situ Electrochemical Activation Strategy toward Organic Cation Preintercalated Layered Vanadium-Based Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Youzhong Dong, Qinghua Fan, Quan Kuang, Jianguo Li, Yunbo Li, Yanming Zhao, Yucheng Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : ACS applied materials & interfaces , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 687873

Layered vanadium-based oxides with preintercalated metal cations are attracting extensive attention as highly promising candidates for aqueous zinc-ion batteries (AZIBs) due to the increase in structural stability originating from the pillar effect. However, the strong electrostatic interaction between the rigid metal cation pillars and zinc ions results in sluggish ionic transport, thereby limiting the high-rate performance. Herein, a layered vanadium-based oxide with protonated 1,4-diaminobutane organic cation (BDA) pillars is designed as a cathode material for AZIBs. Due to the larger radius and stronger interconnection with the VO layers, the organic cation guests acting as pillars not only ensure a large interlayer space but also significantly enhance the structural stability of the layered host. Furthermore, by adopting an in situ electrochemical activation strategy, the quantitative control of the organic cation pillar content is effectively achieved. The irreversible removal of partial pillar guests not only weakens its steric buckling effects on the zinc ion but also provides more effective sites for zinc ion storage. As anticipated, the resulting (H
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH