NSSC: a neuro-symbolic AI system for enhancing accuracy of named entity recognition and linking from oncologic clinical notes.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Álvaro García-Barragán, Juan Cristobal Sanchez Gonzalez, Ernestina Menasalvas, Mariano Provencio, Víctor Robles, Ahmad Sakor, Maria-Esther Vidal

Ngôn ngữ: eng

Ký hiệu phân loại: 153.124 Recognition

Thông tin xuất bản: United States : Medical & biological engineering & computing , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 688506

Accurate recognition and linking of oncologic entities in clinical notes is essential for extracting insights across cancer research, patient care, clinical decision-making, and treatment optimization. We present the Neuro-Symbolic System for Cancer (NSSC), a hybrid AI framework that integrates neurosymbolic methods with named entity recognition (NER) and entity linking (EL) to transform unstructured clinical notes into structured terms using medical vocabularies, with the Unified Medical Language System (UMLS) as a case study. NSSC was evaluated on a dataset of clinical notes from breast cancer patients, demonstrating significant improvements in the accuracy of both entity recognition and linking compared to state-of-the-art models. Specifically, NSSC achieved a 33% improvement over BioFalcon and a 58% improvement over scispaCy. By combining large language models (LLMs) with symbolic reasoning, NSSC improves the recognition and interoperability of oncologic entities, enabling seamless integration with existing biomedical knowledge. This approach marks a significant advancement in extracting meaningful information from clinical narratives, offering promising applications in cancer research and personalized patient care.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH