Structural analysis of an Asterias rubens peptide indicates the presence of a disulfide-directed β-hairpin fold.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Norelle L Daly, Justine Le Quilliec, Michael J Liddell, Alex Loukas, Casey A Schmidt, Naeem Y Shaikh, Michael J Smout, Kartik Sunagar, Rozita Takjoo, David T Wilson, Guangzu Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : FEBS open bio , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 688864

Sea stars are an abundant group of marine invertebrates that display remarkably robust regenerative capabilities throughout all life stages. Numerous proteins and peptides have been identified in a proteome study on the coelomic fluid (biofluid) of the common sea star Asterias rubens, which appear to be involved with the wound-healing response in the organism. However, the three-dimensional structure and function of several of these injury-responsive peptides, including the peptide KASH2, are yet to be investigated. Here, we show that the KASH2 peptide adopts a disulfide-directed β-hairpin fold (DDH). The DDH motif appears to be evolutionarily related to the inhibitor cystine knot motif, which is one of the most widespread disulfide-rich peptide folds. The DDH motif was originally thought to be restricted to arachnids, but our study suggests that as a result of convergent evolution it could also have originated in sea stars. Although the widely conserved DDH fold has potential cross-phyla wound-healing capacity, we have shown that KASH2 does not enhance the proliferation of human fibroblasts, a simple method for wound-healing re-epithelialisation screening. Therefore, additional research is necessary to determine the role of KASH2 in the sea stars.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH