Bulk-wave-acoustofluidic devices provide strong acoustic fields and high device efficiency, thereby offering high-throughput capability when processing biological samples. Such devices are typically driven by lead zirconate titanate (PZT) transducers, which contain a high content of lead, inevitably resulting in environmental and biocompatibility issues. Replacing PZT with lead-free piezoelectric materials in various ultrasonic devices is considered challenging mainly due to the inferior piezoelectric properties lead-free materials possess compared to those of PZT. In this study, through both experiments and numerical simulations, it is demonstrated that the performance of the bulk-wave-acoustofluidic devices driven by (Bi,Na)TiO