Mitochondrial segmentation and function prediction in live-cell images with deep learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hua Bai, Yang Ding, Bin Fang, Haixiao Fang, Kai Huang, Wei Huang, Jintao Li, Lin Li, Panpan Li, Cameron J Nowell, Bo Peng, Nicolas H Voelcker, Guangyu Wang, Jiaxin Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 519.287 Expectation and prediction

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 689672

Mitochondrial morphology and function are intrinsically linked, indicating the opportunity to predict functions by analyzing morphological features in live-cell imaging. Herein, we introduce MoDL, a deep learning algorithm for mitochondrial image segmentation and function prediction. Trained on a dataset of 20,000 manually labeled mitochondria from super-resolution (SR) images, MoDL achieves superior segmentation accuracy, enabling comprehensive morphological analysis. Furthermore, MoDL predicts mitochondrial functions by employing an ensemble learning strategy, powered by an extended training dataset of over 100,000 SR images, each annotated with functional data from biochemical assays. By leveraging this large dataset alongside data fine-tuning and retraining, MoDL demonstrates the ability to precisely predict functions of heterogeneous mitochondria from unseen cell types through small sample size training. Our results highlight the MoDL's potential to significantly impact mitochondrial research and drug discovery, illustrating its utility in exploring the complex relationship between mitochondrial form and function within a wide range of biological contexts.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH