Design of Flavonoid-Based Lipid Domains as Fusion Inhibitors to Efficiently Block Coronavirus and Other Enveloped Virus Infection.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Nikesh Dewangan, Indrani Das Jana, Amirul I Mallick, Arindam Mondal, Avijit Sardar, Pradip K Tarafdar, Sandeep Yadav

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Small (Weinheim an der Bergstrasse, Germany) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 689767

 Developing a broad-spectrum antiviral is imperative in light of the recent emergence of recurring viral infections. The critical role of host-virus attachment and membrane fusion during enveloped virus entry is a suitable target for developing broad-spectrum antivirals. A new class of flavonoid-based fusion inhibitors are designed to alter the membrane's physical properties. These flavonoid-based molecules (MFDA
  myristoyl flavonoid di-aspartic acid) are self-assembled in the membrane, creating distinct nanodomains and effectively inhibiting membrane fusion by modulating the membrane's interfacial properties. The broad-spectrum antiviral efficacy of these compounds are established in effectively blocking the entry of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Type A Influenza, Human coronavirus OC43 (HCoV-OC43), and Vesicular stomatitis virus (VSV). A slightly more effectivity of MFDA in coronavirus infection than other enveloped viruses may be attributed to its secondary interaction with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. A membrane nanodomain formation strategy is highlighted with natural-product-based fusion inhibitors, effectively thwarting the infection of several enveloped viruses, entailing their broad-spectrum antiviral functionality.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH