A Dive Into Yeast's Sugar Diet-Comparing the Metabolic Response of Glucose, Fructose, Sucrose, and Maltose Under Dynamic Feast/Famine Conditions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ilse Henrike Pardijs, Hendrik Matthijs van Klaveren, Koen Johannes Anthonius Verhagen, Sebastian Aljoscha Wahl

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Biotechnology and bioengineering , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 690174

Microbes experience dynamic conditions in natural habitats as well as in engineered environments, such as large-scale bioreactors, which exhibit increased mixing times and inhomogeneities. While single perturbations have been studied for several organisms and substrates, the impact of recurring short-term perturbations remains largely unknown. In this study, we investigated the response of Saccharomyces cerevisiae to repetitive gradients of four different sugars: glucose, fructose, sucrose, and maltose. Due to different transport mechanisms and metabolic routes, nonglucose sugars lead to varied intracellular responses. To characterize the impact of the carbon sources and the dynamic substrate gradients, we applied both steady-state and dynamic cultivation conditions, comparing the physiology, intracellular metabolome, and proteome. For maltose, the repeated concentration gradients led to a significant decrease in biomass yield. Under glucose, fructose, and sucrose conditions, S. cerevisiae maintained the biomass yield observed under steady-state conditions. Although the physiology was very similar across the different sugars, the intracellular metabolome and proteome were clearly differentiated. Notably, the concentration of upper glycolytic enzymes decreased for glucose and maltose (up to -60% and -40%, respectively), while an increase was observed for sucrose and fructose when exposed to gradients. Nevertheless, for all sugar gradient conditions, a stable energy charge was maintained, ranging between 0.78 and 0.89. This response to maltose is particularly distinct compared to previous single-substrate pulse experiments or limitation to excess shifts, which led to maltose-accelerated death in earlier studies. At the same time, enzymes of lower glycolysis were elevated. Interestingly, common stress-related proteins (GO term: cellular response to oxidative stress) decreased during dynamic conditions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH