The hydrogen spillover phenomenon provides an expeditious reaction pathway via hydrogen transfer from a strong H adsorption site to a weak H adsorption site, enabling a cost-efficient hydrogen evolution reaction (HER) analogous to platinum with moderate H adsorption energy. Here, a high-entropy oxychalcogenide (HEOC) comprising Co, Ni, Mo, W, O, Se, and Te is prepared by a two-step electrochemical deposition for hydrogen spillover-enhanced HER in acidic and alkaline water electrolysis. The anodic-cathodic reversal current enables the co-deposition of cations and aliovalent anions, facilitating a glass structure with multiple active sites for hydrogen spillover. The HEOC exhibits low overpotentials of 52 and 57 mV to obtain a current density of 10 mA cm