Performance of Lung Cancer Prediction Models for Screening-detected, Incidental, and Biopsied Pulmonary Nodules.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sanja Antic, Stephen Deppen, Riqiang Gao, Eric L Grogan, Michael N Kammer, Michael Knight, Aravind Krishnan, Bennett A Landman, Thomas A Lasko, Robert J Lentz, Thomas Z Li, Fabien Maldonado, Yency Martinez, Rafael Paez, Kim L Sandler, David Xiao, Kaiwen Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 570.752 Preserving biological specimens

Thông tin xuất bản: United States : Radiology. Artificial intelligence , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 690381

Purpose To evaluate the performance of eight lung cancer prediction models on patient cohorts with screening-detected, incidentally detected, and bronchoscopically biopsied pulmonary nodules. Materials and Methods This study retrospectively evaluated promising predictive models for lung cancer prediction in three clinical settings: lung cancer screening with low-dose CT, incidentally detected pulmonary nodules, and nodules deemed suspicious enough to warrant a biopsy. The area under the receiver operating characteristic curve of eight validated models, including logistic regressions on clinical variables and radiologist nodule characterizations, artificial intelligence (AI) on chest CT scans, longitudinal imaging AI, and multimodal approaches for prediction of lung cancer risk was assessed in nine cohorts (
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH