Carbon Nanocoils-Assisted Formation of Tunable Pore Graphene Aerogels for Lightweight Broadband Microwave Absorption, Thermal Insulation, and Antifreeze Devices.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yuping Duan, Zeng Fan, Shude Gu, Yuan Guo, Xiaoji Liu, Lujun Pan, Huifang Pang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Small (Weinheim an der Bergstrasse, Germany) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 690744

The rational design of the aerogel pore structure facilitates the maximum excitation of the materials physicochemical properties, which enables the modulation of their electromagnetic performance. However, the controllable adjustment of the aerogel pore structure remains a significant challenge. Here, the freeze-thawing process and thermal annealing treatment are introduced to prepare reduced graphene oxide (rGO)/iron (Fe)/carbon nanocoil (CNC) aerogels. The composite aerogels with tunable pore structure are obtained by adjusting the content of CNC. Both experiments and simulations confirm that the pore structure with the addition of CNC presents a continuous 3D conductive network, which improves the conductivity loss and polarization loss. Meanwhile, the amorphous carbon structure within the CNC causes structural defects, which further enhance the polarization loss. Therefore, the rGO/Fe/CNC aerogel with optimized pore structure has lightweight and efficient electromagnetic wave absorption. At an ultra-low filling ratio of 0.8 wt%, the effective absorption bandwidth reaches 7.9 GHz and the optimal reflection loss is -43.5 dB. In addition, due to the 3D continuous network interwoven of aerogels and the temperature stability of carbon nanomaterials, composite aerogels have excellent thermal insulation, antifreeze performance, and hydrophobicity. This multifunctional absorber has great potential for application in complex and changing electromagnetic environments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH