Deep learning-based spatio-temporal fusion for high-fidelity ultra-high-speed X-ray radiography.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tekin Bicer, Samuel J Clark, Kamel Fezzaa, Tao Sun, Songyuan Tang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of synchrotron radiation , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 690768

Full-field ultra-high-speed (UHS) X-ray imaging experiments have been well established to characterize various processes and phenomena. However, the potential of UHS experiments through the joint acquisition of X-ray videos with distinct configurations has not been fully exploited. In this paper, we investigate the use of a deep learning-based spatio-temporal fusion (STF) framework to fuse two complementary sequences of X-ray images and reconstruct the target image sequence with high spatial resolution, high frame rate and high fidelity. We applied a transfer learning strategy to train the model and compared the peak signal-to-noise ratio (PSNR), average absolute difference (AAD) and structural similarity (SSIM) of the proposed framework on two independent X-ray data sets with those obtained from a baseline deep learning model, a Bayesian fusion framework and the bicubic interpolation method. The proposed framework outperformed the other methods with various configurations of the input frame separations and image noise levels. With three subsequent images from the low-resolution (LR) sequence of a four times lower spatial resolution and another two images from the high-resolution (HR) sequence of a 20 times lower frame rate, the proposed approach achieved average PSNRs of 37.57 dB and 35.15 dB, respectively. When coupled with the appropriate combination of high-speed cameras, the proposed approach will enhance the performance and therefore the scientific value of UHS X-ray imaging experiments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH