INTRODUCTION: The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED: This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION: eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.