Machine learning-driven analysis of activation energy for metal halide perovskites.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Seckin Akin, Abul Kalam, Siddhi Vinayak Pandey, Raj Dashrath Patel, Vimi Patel, Daniel Prochowicz, Kunjrani Sorathia, Kushal Unjiya, Pankaj Yadav

Ngôn ngữ: eng

Ký hiệu phân loại: 946.7 *Eastern Spain and Andorra

Thông tin xuất bản: England : Dalton transactions (Cambridge, England : 2003) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 691051

Metal halide perovskite single crystals (MHPSCs) are highly promising materials for optoelectronic applications, but their stability is hindered by ion migration, thereby impacting their performance. A key factor to understand this issue is calculating the activation energy. Electrochemical Impedance Spectroscopy (EIS) is a powerful technique for separating ionic and electronic processes, yet traditional analysis is labour-intensive, involving extensive measurements, circuit fitting, and manual data interpretation. In this study, we introduce a machine learning (ML)-driven approach to fully automate EIS analysis. EIS data, collected for MAPbI
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH