Coacervation drives morphological diversity of mRNA encapsulating nanoparticles.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Paul J Hurst, Emmit K Pert, Grant M Rotskoff, Robert M Waymouth

Ngôn ngữ: eng

Ký hiệu phân loại: 294.3823 Buddhism

Thông tin xuất bản: United States : The Journal of chemical physics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 691256

The spatial arrangement of components within an mRNA encapsulating nanoparticle has consequences for its thermal stability, which is a key parameter for therapeutic utility. The mesostructure of mRNA nanoparticles formed with cationic polymers has several distinct putative structures: here, we develop a field theoretic simulation model to compute the phase diagram for amphiphilic block copolymers that balance coacervation and hydrophobicity as driving forces for assembly. We predict several distinct morphologies for the mesostructure of these nanoparticles, depending on salt conditions and hydrophobicity. We compare our predictions with cryogenic-electron microscopy images of mRNA encapsulated by charge altering releasable transporters. In addition, we provide a graphics processing unit-accelerated, open-source codebase for general purpose field theoretic simulations, which we anticipate will be a useful tool for the community.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH