Primed Mesenchymal Stem Cells by IFN-γ and IL-1β Ameliorate Acute Respiratory Distress Syndrome through Enhancing Homing Effect and Immunomodulation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Young-Jae Cho, Yong-Seok Han, Kyung-Sun Kang, Bokyong Kim, Jieun Kim, Taeho Kong, Seunghee Lee, Su Kyoung Seo, Woo Min Seo

Ngôn ngữ: eng

Ký hiệu phân loại: 617.54 *Thorax (Chest) and respiratory system

Thông tin xuất bản: Korea (South) : Biomolecules & therapeutics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 691411

Acute Respiratory Distress Syndrome (ARDS) is a severe condition characterized by extensive lung inflammation and increased alveolar-capillary permeability, often triggered by infections or systemic inflammatory responses. Mesenchymal stem cells (MSCs)-based therapy holds promise for treating ARDS, as MSCs manifest immunomodulatory and regenerative properties that mitigate inflammation and enhance tissue repair. Primed MSCs, modified to augment specific functionalities, demonstrate superior therapeutic efficacy in targeted therapies compared to naive MSCs. This study explored the immunomodulatory potential of MSCs using mixed lymphocyte reaction (MLR) assays and co-culture experiments with M1/M2 macrophages. Additionally, RNA sequencing was employed to identify alterations in immune and inflammation-related factors in primed MSCs. The therapeutic effects of primed MSCs were assessed in an LPS-induced ARDS mouse model, and the underlying mechanisms were investigated through spatial transcriptomics analysis. The study revealed that MSCs primed with IFN-γ and IL-1β significantly enhanced the suppression of T cell activity compared to naive MSCs, concurrently inhibiting TNF-α while increasing IL-10 production in macrophages. Notably, combined treatment with these two cytokines resulted in a significant upregulation of immune and inflammation-regulating factors. Furthermore, our analyses elucidated the mechanisms behind the therapeutic effects of primed MSCs, including the inhibition of inflammatory cell infiltration in lung tissue, modulation of immune and inflammatory responses, and enhancement of elastin fiber formation. Signaling pathway analysis confirmed that efficacy could be enhanced by modulating NFκB and TNF-α signaling. In conclusion, in early-phase ARDS, primed MSCs displayed enhanced homing capabilities, improved lung function, and reduced inflammation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH